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Theory and modeling of polarization switching in ferroelectrics
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Abstract

Kinetics of polarization response in ferroelectrics is reproduced within Langevin, Fokker–Planck and imaginary time Schrödinger equation
techniques for energy functionals of growing complexity modeling an assembly of coarse grained particles with attractive first neighbor
interaction. Symplectic integration based numerical approach captures dynamic hysteresis, polarization switching, and spatially extended
stationary polarization. Solution of relevant nonstationary problem is adapted to large scale parallel computing.
© 2005 Elsevier Ltd. All rights reserved.
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. Introduction

Dynamics of metastable systems in general and the
olarization response of ferroelectrics in particular is an
ctive field of study based, for static solutions, on variation
f Ginzburg–Landau type energy functionals. Extension
f this standard approach toward kinetics of polarization

ncludes additive Langevin noise term and transformation
f the problem to Fokker–Planck equation for probability
ensity of polarization.1–3 The Fokker–Planck equations
ay be derived in standard way for a vide variety of model
nergy functionals, nevertheless, its nonstationary solutions
apturing external driving, spatial extension, and finite size
ffects is a challenge for the mathematical technique. In

his context the Wentzel–Kramer–Brilluin (WKB) analysis
ased on mapping between Fokker–Planck and imaginary

ime Schr̈odinger equation and applicable for symplectic nu-
erical integration has received a renewed attention.4 Some

ecent results for metastable systems specified by quartic
nergy functional and modeling, in some extent, dynamic
ysteresis in a system with periodic boundary conditions are

5

functional6 modeling a set of interacting Landau-type coa
grained blocks. Specific feature of relevant Fokker–Pla
equation is strong nonlinearity which, nevertheless,
be managed in nonperturbative fashion in the cours
symplectic integration7. In this work we give a short insig
in this kind of analysis with special emphasis on polariza
response and exhibiting a nontrivial and contraintu
behavior as originated by cooperative effect of thermal n
and external driving. Our main results concern dyna
hysteresis (Section2), polarization switching (Section3),
and spatial extension (Section4). Physical content an
capabilities of the proposed mathematical technique
more complex problems is shortly discussed in Section5.

2. Definitions and concepts: dynamic hysteresis

Definitions start with the standard Ginzburg–Lan
energy functional for double well (dimensionless) po
tialU(P,t) =−1/2P2 + 1/4P4 + 1/2(�P)2−λ(t)P routinely ap-
plied to uniaxial ferroelectrics, the Langevin kinetic equa
iven in. Taking in game the ferroelectric phase instability
equests a more complex than the Ginzburg–Landau energy
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with δ-correlated Gaussian noise term, and Fokker–Planck
equation for probability density of polarizationρ(P,t)

∂ρ(P, t) = Γ ∂
(
δU
ρ(P, t)

)
+ k TΓ ∂

2ρ(P, t)
. (1)

d.
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Here Γ , T are the kinetic coefficient and temperature,
correspondingly,Θ the diffusion coefficient (noise strength)
bounding together parameters of the system andλ(t) specify
the time dependent driving voltage. In further calculations,
Eq. (1) is transformed in dimensionless form and the multi-
variate nature of the probability densityρ({P},t) is not ex-
posed explicitly as motivated by later split of the multivariate
probability density in statistically independent parts

ρ̇(P, t) = ∂

∂P

(
δU

δP
ρ(P, t)

)
+Θ∂

2ρ(P, t)

∂P2 (2)

The concept is to transform Eq.(2) in imaginary time
Schr̈odinger equation and its subsequent symplectic integra-
tion. Omitting temporary the gradient term (�P)2/2 and ad-
dressing to the quartic model we use the standard WKB ansatz
ρ(P,t) = exp[−U(P)/2Θ]G(P,t) mapping Fokker–Planck and
imaginary time Schr̈odinger equations. What we search is the
auxiliary function

∂G(P, t)

∂t
=

[
Θ
∂2

∂P2 + V (P)

]
G(P, t) (3)

Here the potential operatorV(P)reads as:

V (P) =
[
− 1

4Θ

[
U ′(P)

]2 + 1

2
U ′′(P)

]
(4)
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Fig. 1. Dynamic hysteresis under harmonic driving: comparison of semiadi-
abatic approach2 (line) and symplectic integration (dots). Parameters of the
problem: amplitude of the driving voltageh= 0.309h0, frequencyΩ= 10−3,
Θ= 1/20,λ(t) = sin(Ωt), andh0 = 2/

√
27 is the static coercive field.

Eqs.(1)–(6). The underlying physics concerns noninteract-
ing coarse grained blocks with Ginzburg–Landau type in-
ternal kinetics. Bifurcation of the stationary ground state is
demonstrated in Section3.

Spatial extension formally is introduced by returning the
gradient term in energy densityU(P,t)9 and yields analytical
estimates connecting alterations of polarization with symme-
try violation of theV(P)-potential Eq.(4). The effect of driv-
ing field is enhanced by a term proportional to the second
spatial derivative of polarization contributing in symmetry
violation and favoring polarization switching in vicinity of
domain boundaries. This approach gives an insight in a long-
standing problem of ferroelectric domain switching that ap-
pears far bellow the classic coercive voltage. In more detail,
this approach requires split of the multivariate probability
density in statistically independent parts as based on series
representation of its first moment and shown in Section4.

3. Nonlocality: polarization switching

Bifurcation of the ground state and the remnant polariza-
tion is recovered by energy functional modeling an assembly
of overdamped anharmonic oscillators.6 On physical grounds
it concerns a system of coarse grained particles (blocks) with
attractive interaction modeled by the Hamiltonian

H

ρ

h nd
ε type
c
ε he
nd the auxiliary functionG(P,t) Eq. (3) unfolds polariza
ion kinetics through the first moment of probability den
(P,t) Eq. (2). Analytical part of computations is complet
y recurrence relation valid for a small time slice�t

(P, t +∆t) = exp

[
�t

(
Θ
∂2

∂P2 + V (P)

)]
G(P, t) (5)

Example solutions for quartic toy models are gi
n.4,7 Computing details include correctable integ
ion algorithms8 and replacing the exponential opera
xp[Θ�t(∂2)/(∂P2)] in Eq. (5) by its Cayley’s form7 result-

ng in matrix recurrence equation for the auxiliary functi
amely

1 − Θ�t

2

∂2

∂P2

)
G(P, t +�t)

= exp

[
�t

2
V + �t3

48
(∇V )2

] (
1 + Θ�t

2

∂2

∂P2

)

× exp

[
�t

2
V + �t3

48
(∇V )2

]
G(P, t) (6)

Example solution for the hysteresis at harmonic driv
(t) ∝ sin(Ωt) modeled by Eq.(6) shown inFig. 1(dots) ex-
ibits zero ground state as its stationary point. In cont

he eigenfunction solution of Eq.(2) is combined with Flo
uet function technique2 and counts in exclusively the ze
nd first order eigenfunctions. Nevertheless, the compa

ty is fairly good and reassures correctness of the appr
= U(Pi) + ε

2N

N∑
k

(Pk − Pi)2 (7)

The corresponding Fokker–Planck equation reads as

˙ (P, t) = ∂

∂P

[
U ′(P, t) +Θ ∂

∂P

]
ρ(P, t) (8)

ere eachith block is described by equal kinetics a
> 0 denotes the strength of attractive mean-field
oupling. For quartic potentialU(P, t) = −P2/2 + P4/4 +
/2[P − P̄(t)]2 − Pλ(t) and at appropriate interaction t
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Fig. 2. Schematic plot ofP − P̄(0) as a function of polarizationP(in Ps

units). The stationary polarization̄P(0) is recovered by intersection of
P − P̄(0) plot with thep-axis exhibiting two stable solutions at̄P = ±0.64
and an unstable solution at̄P = 0. Parameters of the model:ε= 0.07,λ= 0,
Θ= 1/20.

system exhibits two remnant (stationary) states as

ρ(P,0) = exp[−U1(P,0) + U2(P,0)/Θ]∫
exp[−U1(P,0) + U2(P,0)/Θ]dP

(9)

Here U1(P,t) =−(P2/2) + (P4/4)−Pλ(0), U2(P,0) =
ε/2[P − P̄(0)]2and the denominator provides normalization
of the probability distribution

∫
ρ(P,0)dP = 1. The station-

ary (initial) value of the first moment of polarization density
P̄(0) is found by integrating Eq.(9) overP with P̄(0) as a
parameter. InP,P − P̄(0) frame the exact value of̄P(0)
exhibit itself as the intersection ofP − P̄(0) plot with the
P-axis as shown inFig. 2.

Specific for the mathematical technique is nonlinearity
of Eq. (8) the potentialU(P,t) term of which comprises the
first moment of probability density. Nevertheless, nonpertur-
bative temporal solution of this nonlinear problem is found
by introducing recursion-specific approximation of the first
momentP̄(ti +∆t) = P̄(ti) + qi∆t and selfconsistent calcu-
lation of its time derivativeqi . Long time zero field limit of
this solution is found in6 stating that (at appropriate inter-
action constant) the system always reaches one of the sta-
tionary states regardless of the initial condition. Extension
of this result for periodic driving is studied in10 and equi-
librium properties are found similar to those of shifted un-
driven system. The probability that a metastable system re-
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Fig. 3. Polarization switching from̄Pr+ = +0.64 stationary initial state to
theP̄r− = −0.64 final state initiated by−0.1,−0.05, and−0.027 sow tooth
shaped pulse of short (dots) and moderate (dashed lines) length.

of the first moment of probability distribution at the time
instant the driving is switched off, namelȳPλ=0 > 0 yields
P̄t→∞ → P̄(0), and otherwise. The first case is confirmed
by the−0.027 short pulse (dots). Otherwise, the polarization
plot corresponding to−0.027 moderate length pulse (dashed
line) approaches tōPr− = −0.64 from bellow in accord with
the H-theorem of global stability. Similarly, the polariza-
tion plot corresponding to−0.05 short pulse (dots) exhibit
P̄λ=0 < 0 and approaches tōPr− = −0.64 from above also
in accord with the H-theorem. All driving amplitudes exceed-
ing −0.05 are overcritical as manifested by the rest of plots
in Fig. 3.

4. Spatial extension: first neighbor interaction

Spatial extension, lost in mean field approach Eq.(7), is
restored ad hoc by assuming that (i) the system consists of
large but finite number of coarse grained blocks with internal
kinetics obeying Eq.(7) at ε= 0, and (ii) the interaction be-
tween blocks is restricted within first neighbor so addressing
the problem to ensemble of interacting blocks. The relevant
model Hamiltonian

H ≡
N∑
i

{
Ui + ε

2
((P̄i+1(t) − Pi)2 + (P̄i−1(t) − Pi)2)

}

-
m tly
i d to
s s

ρ

ides within a domain of attraction is estimated in11. Essen
ial solution for polarization reverse is illustrated inFig. 3
or a system with initially positive remnant polarization. T
everse is initiated by a negative sow tooth shaped pulse
fied by−0.1,−0.05, and−0.027 dimensionless amplitud
caled after 2/

√
27 static coercive field.2 Both short (100π)

nd moderate length (1000π/2) pulses apply for each drivin
mplitude. Time propagation of polarization response s

rom P̄r+ = 0.64 remnant polarization and finishes at a va
¯ < P̄r+ as the driving turns to zero with subsequent re
tion toward one of the stationary states. The sign of rem
olarization approached by the system depends on the
(10)

Here Ui = −1/2Pi2 + 1/4Pi4 − λ(t)Pi, the first mo
ents of probability densitȳPk are evaluated selfconsisten

n the recursion-specific approximation technique applie
patial mesh. Relevant Fokker–Planck equation reads a

˙(Pi, t) = − ∂

∂Pi

×
[
−∂Φi
∂Pi
ρ(Pi, t) + ε(P̄i+1(t) − 2Pi + P̄i−1(t))ρ(Pi, t)

]

+Θi ∂
2

∂P2
i

ρ(Pi, t) (11)
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Fig. 4. Example solution for 180◦ domains within a 1-D region with zero
boundary conditions and various interaction constants.

and its stationary solution is shown inFig. 4for zero bound-
ary conditions and various interaction between blocks as a pa-
rameter. Starting values̄P = ±1 are obtained from the static
approach12,13.

Nonstationary solution of Eq.(11) starts with the WKB
ansatzρ(Pi ,t) = exp[−F(Pi ,t)]G(Pi ,t) and the relation for
the exponential factor is given byF = [εPi(P̄i−1 − Pi +
P̄i+1) − U(Pi)]/(2Θ) generating a set of imaginary time
Schr̈odinger equations for the auxiliary functions

Ġ(Pi, t) = (Ti + V1i + V2i +Ki)G(Pi, t) (12)

defined over the spatial meshi∈ [1, imax]. Here
the kinetic Ti = Θ(∂2/∂P2

i )and first potential
V1i = −1/4Θi(∂Ui/∂Pi)2 + 1/2(∂2Ui/∂Pi

2)terms in
Eq. (12) are regular ones, Eq.(4). The supplementary
potential terms, accounting for interaction yields

V2i = ε

4Θ

(
4Θi − (2Pi − P̄i−1(t) − P̄i+1(t))

(
2Pi − ε(P̄i−1(t) +

Ki = [−εPi ˙̄Pi−1(t) − εPi ˙̄Pi+1(t) + Φ̇i]
2Θ

(14)

approving the previous analytical estimates for polarization

po-
q.
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o-

ex-
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5. Summary and discussion

Thermal noise activated nonadiabatic behavior of
metastable systems is investigated in the context of electric
hysteresis and polarization switching in ferroelectrics. Main
focus is made on the mathematical technique as based on
the Langevin–Fokker–Planck-imaginary time Schrödinger
scheme addressing the problem to matrix recurrence re-
lations in the course of symplectic integration. The defi-
nition of physical system is given by energy functionals
of growing complexity and the test solutions captures ar-
bitrary alternate driving, polarization switching, and spa-
tial inhomogeneity. Key features of this mathematical tech-
nique are demonstrated by dynamic hysteresis modeled by
quartic energy functional. A more realistic energy func-
tional for an assembly of coarse grained particles with at-
tractive interaction captures bifurcation of stationary states
and divergence of relaxation time. Nonperturbative solu-
tion of this strictly nonlinear problem is exemplified by
polarization switching and is handled by series expansion
of the first moments of probability density so readdress-
ing evaluation of its coefficients to standard algebra. This
trick allows spatial extension and makes the density distri-
bution in different spatial points statistically independent.
Based on this property the stationary solution for finite
size problem is demonstrated by the third model energy

h-
ar-
d-

cale
re-
ere
in

he
les

oi-
ail-
g, it
ary
ele-
al
atic

o.
d-
switching9 in more detail. Firstly, the impact ofPi(2Pi −
P̄i−1(t) − P̄i+1(t))-type terms in Eq.(13) exhibit maximum
in the first order of interaction factorε. Secondly, the inter-
action contributes even if the second spatial derivative of
larization is zero. Thirdly, the impact of alternate driving E
(14)is supplemented by terms proportional to the interact
factor ε. Representation of Eq.(12) in terms of symplectic
integration Eq.(6) includes series expansion of the first m
ments of probability densitȳPi(t) similarly to this in Section
3 resulting in a set of coupled algebraic equations for the
pansion coefficients. Numerical solution of Eqs.(12)–(14)is
a subject of large scale modeling and is out of scope of
work.
P̄i+1(t)) + 2
∂U

∂Pi

))
(13)

functional with interaction terms restricted to first neig
bors so maintaining the spatial inhomogeneity of pol
ization field. The relevant nonstationary problem is a
dressed to symplectic integration adapted to large s
parallel computing. Whereas, the physical content is
duced to display exclusively the properties of interest th
are no principal restrictions for supplementary terms
the energy functional as well as for dimensionality of t
problem, and boundary and initial conditions. Examp

of supplementary terms include acoustic interactions14 and
the impact of charged defects accounted for by the P
son equation. The ordinary boundary conditions are av
able automatically due the real space mesh. Concludin
is shown how the Langevin, Fokker–Planck and imagin
time Schr̈odinger equation techniques can be preceded
gantly in terms of symplectic integration even for nonloc
and nonlinear problems and has a potential to nonadiab
response in ferroelectrics.
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